动手学深度学习v2(5.2)参数管理
在选择了架构并设置了超参数后,我们就进入了训练阶段。 此时,我们的目标是找到使损失函数最小化的模型参数值。 经过训练后,我们将需要使用这些参数来做出未来的预测。 此外,有时我们希望提取参数,以便在其他环境中复用它们, 将模型保存下来,以便它可以在其他软件中执行, 或者为了获得科学的理解而进行检查。
动手学深度学习v2(5.1)层和块
之前首次介绍神经网络时,我们关注的是具有单一输出的线性模型。 在这里,整个模型只有一个输出。 注意,单个神经网络 (1)接受一些输入; (2)生成相应的标量输出; (3)具有一组相关 参数(parameters),更新这些参数可以优化某目标函数。 然后,当考虑具有多个输出的网络时, 我们利用矢量化算
动手学深度学习v2(4.10)实战Kaggle比赛:预测房价
之前几节我们学习了一些训练深度网络的基本工具和网络正则化的技术(如权重衰减、暂退法等)。 本节我们将通过Kaggle比赛,将所学知识付诸实践。 Kaggle的房价预测比赛是一个很好的起点。 此数据集由Bart de Cock于2011年收集 (De Cock, 2011), 涵盖了2006-2010
jetson远程连接(nomachine)
jetson nano VNC远程桌面配置及使用(nomachine)_jetson nano nomachine-CSDN博客 nomachine 远程桌面黑屏解决办法 - cslxiao - 博客园 开发板(server)配置 启动Jetson Nano开发板,打开网页浏览器,复制网址:“htt
动手学深度学习v2(4.9)环境和分布偏移
前面我们学习了许多机器学习的实际应用,将模型拟合各种数据集。 然而,我们从来没有想过数据最初从哪里来?以及我们计划最终如何处理模型的输出? 通常情况下,开发人员会拥有一些数据且急于开发模型,而不关注这些基本问题。 许多失败的机器学习部署(即实际应用)都可以追究到这种方式。 有时,根据测试集的精度衡量
动手学深度学习v2(4.8)数值稳定性和模型初始化
到目前为止,我们实现的每个模型都是根据某个预先指定的分布来初始化模型的参数。 有人会认为初始化方案是理所当然的,忽略了如何做出这些选择的细节。甚至有人可能会觉得,初始化方案的选择并不是特别重要。 相反,初始化方案的选择在神经网络学习中起着举足轻重的作用, 它对保持数值稳定性至关重要。 此外,这些初始
动手学深度学习v2(4.7)前向传播、反向传播和计算图
我们已经学习了如何用小批量随机梯度下降训练模型。 然而当实现该算法时,我们只考虑了通过前向传播(forward propagation)所涉及的计算。 在计算梯度时,我们只调用了深度学习框架提供的反向传播函数,而不知其所以然。 梯度的自动计算(自动微分)大大简化了深度学习算法的实现。 在自动微分之前
动手学深度学习v2(4.6)暂退法
在 4.5节 中, 我们介绍了通过惩罚权重的L2范数来正则化统计模型的经典方法。 在概率角度看,我们可以通过以下论证来证明这一技术的合理性: 我们已经假设了一个先验,即权重的值取自均值为0的高斯分布。 更直观的是,我们希望模型深度挖掘特征,即将其权重分散到许多特征中, 而不是过于依赖少数潜在的虚假关
动手学深度学习v2(4.5)权重衰减
前一节我们描述了过拟合的问题,本节我们将介绍一些正则化模型的技术。 我们总是可以通过去收集更多的训练数据来缓解过拟合。 但这可能成本很高,耗时颇多,或者完全超出我们的控制,因而在短期内不可能做到。 假设我们已经拥有尽可能多的高质量数据,我们便可以将重点放在正则化技术上。
动手学深度学习v2(4.4)模型选择、欠拟合和过拟合
作为机器学习科学家,我们的目标是发现模式(pattern)。 但是,我们如何才能确定模型是真正发现了一种泛化的模式, 而不是简单地记住了数据呢? 例如,我们想要在患者的基因数据与痴呆状态之间寻找模式, 其中标签是从集合痴呆轻度认知障碍健康{痴呆,轻度认知障碍,健康}中提取的。 因为基因可以唯一确定每