本文最后更新于 2024-11-14,文章内容可能已经过时。

回归(regression)是能为一个或多个自变量与因变量之间关系建模的一类方法。 在自然科学和社会科学领域,回归经常用来表示输入和输出之间的关系。

在机器学习领域中的大多数任务通常都与预测(prediction)有关。 当我们想预测一个数值时,就会涉及到回归问题。 常见的例子包括:预测价格(房屋、股票等)、预测住院时间(针对住院病人等)、 预测需求(零售销量等)。 但不是所有的预测都是回归问题。 在后面的章节中,我们将介绍分类问题。分类问题的目标是预测数据属于一组类别中的哪一个。

线性回归的基本元素

线性回归(linear regression)可以追溯到19世纪初, 它在回归的各种标准工具中最简单而且最流行。 线性回归基于几个简单的假设: 首先,假设自变量x和因变量y 之间的关系是线性的, 即y 可以表示为x中元素的加权和,这里通常允许包含观测值的一些噪声; 其次,我们假设任何噪声都比较正常,如噪声遵循正态分布。

为了解释线性回归,我们举一个实际的例子: 我们希望根据房屋的面积(平方英尺)和房龄(年)来估算房屋价格(美元)。 为了开发一个能预测房价的模型,我们需要收集一个真实的数据集。 这个数据集包括了房屋的销售价格、面积和房龄。 在机器学习的术语中,该数据集称为训练数据集(training data set) 或训练集(training set)。 每行数据(比如一次房屋交易相对应的数据)称为样本(sample), 也可以称为数据点(data point)或数据样本(data instance)。 我们把试图预测的目标(比如预测房屋价格)称为标签(label)或目标(target)。 预测所依据的自变量(面积和房龄)称为特征(feature)或协变量(covariate)。

通常,我们使用n 来表示数据集中的样本数。 对索引为i的样本,其输入表示为x(i)=[x_1^{(i)},x_2^{(i)}]^⊤, 其对应的标签是y(i)

线性模型

线性假设是指目标(房屋价格)可以表示为特征(面积和房龄)的加权和,如下面的式子:

price=w_{area}*area+w_{age}*age+b \tag{3.1.1}

上述公式(3.1.1)中的w_{area}w_{age} 称为权重(weight),权重决定了每个特征对我们预测值的影响。b称为偏置(bias)、偏移量(offset)或截距(intercept)。 偏置是指当所有特征都取值为0时,预测值应该为多少。 即使现实中不会有任何房子的面积是0或房龄正好是0年,我们仍然需要偏置项。 如果没有偏置项,我们模型的表达能力将受到限制。 严格来说, (3.1.1)是输入特征的一个 仿射变换(affine transformation)。 仿射变换的特点是通过加权和对特征进行线性变换(linear transformation), 并通过偏置项来进行平移(translation)。

给定一个数据集,我们的目标是寻找模型的权重w和偏置b, 使得根据模型做出的预测大体符合数据里的真实价格。 输出的预测值由输入特征通过线性模型的仿射变换决定,仿射变换由所选权重和偏置确定。

而在机器学习领域,我们通常使用的是高维数据集,建模时采用线性代数表示法会比较方便。 当我们的输入包含d个特征时,我们将预测结果\hat{y}(通常使用“尖角”符号表示y的估计值)表示为:

\hat{y}=w_1x_1+...+w_dx_d+b \tag{3.1.2}

将所有特征放到向量x\in \R^d中, 并将所有权重放到向量w\in \R^d中, 我们可以用点积形式来简洁地表达模型:

\hat{y}=w^Tx+b \tag{3.1.3}

(3.1.3)中, 向量x对应于单个数据样本的特征。 用符号表示的矩阵X\in \R^{n\times d}可以很方便地引用我们整个数据集的n个样本。 其中,X的每一行是一个样本,每一列是一种特征。

对于特征集合X,预测值\hat{y}\in \R^n 可以通过矩阵-向量乘法表示为:

\hat{y}_{(n\times1)} = X_{(n\times d)}w_{(d\times1)+b \tag{3.1.4}

这个过程中的求和将使用广播机制 (广播机制在 2.1.3节中有详细介绍)。 给定训练数据特征X和对应的已知标签y, 线性回归的目标是找到一组权重向量w和偏置b: 当给定从X的同分布中取样的新样本特征时, 这组权重向量和偏置能够使得新样本预测标签的误差尽可能小。

虽然我们相信给定X预测y的最佳模型会是线性的, 但我们很难找到一个有n个样本的真实数据集,其中对于所有的1\leq i \leq ny_{(i)}完全等于w^Tx^{(i)}+b。 无论我们使用什么手段来观察特征X和标签y, 都可能会出现少量的观测误差。 因此,即使确信特征与标签的潜在关系是线性的, 我们也会加入一个噪声项来考虑观测误差带来的影响。

在开始寻找最好的模型参数(model parameters)wb之前, 我们还需要两个东西: (1)一种模型质量的度量方式; (2)一种能够更新模型以提高模型预测质量的方法。

损失函数

在我们开始考虑如何用模型拟合(fit)数据之前,我们需要确定一个拟合程度的度量。 损失函数(loss function)能够量化目标的实际值与预测值之间的差距。 通常我们会选择非负数作为损失,且数值越小表示损失越小,完美预测时的损失为0。 回归问题中最常用的损失函数是平方误差函数。 当样本i的预测值为\hat y^{(i)},其相应的真实标签为y^{(i)}时, 平方误差可以定义为以下公式:

由于平方误差函数中的二次方项, 估计值\hat y^{(i)}和观测值y^{(i)}之间较大的差异将导致更大的损失。 为了度量模型在整个数据集上的质量,我们需计算在训练集n个样本上的损失均值(也等价于求和)。

解析解

线性回归刚好是一个很简单的优化问题。 与我们将在本书中所讲到的其他大部分模型不同,线性回归的解可以用一个公式简单地表达出来, 这类解叫作解析解(analytical solution)。 首先,我们将偏置b 合并到参数w 中,合并方法是在包含所有参数的矩阵中附加一列。 我们的预测问题是最小化||y-Xw||^2 。 这在损失平面上只有一个临界点,这个临界点对应于整个区域的损失极小点。 将损失关于w的导数设为0,得到解析解:

像线性回归这样的简单问题存在解析解,但并不是所有的问题都存在解析解。 解析解可以进行很好的数学分析,但解析解对问题的限制很严格,导致它无法广泛应用在深度学习里。

随机梯度下降

即使在我们无法得到解析解的情况下,我们仍然可以有效地训练模型。 在许多任务上,那些难以优化的模型效果要更好。 因此,弄清楚如何训练这些难以优化的模型是非常重要的。

本书中我们用到一种名为梯度下降(gradient descent)的方法, 这种方法几乎可以优化所有深度学习模型。 它通过不断地在损失函数递减的方向上更新参数来降低误差。

梯度下降最简单的用法是计算损失函数(数据集中所有样本的损失均值) 关于模型参数的导数(在这里也可以称为梯度)。 但实际中的执行可能会非常慢:因为在每一次更新参数之前,我们必须遍历整个数据集。 因此,我们通常会在每次需要计算更新的时候随机抽取一小批样本, 这种变体叫做小批量随机梯度下降(minibatch stochastic gradient descent)。

在训练了预先确定的若干迭代次数后(或者直到满足某些其他停止条件后), 我们记录下模型参数的估计值,表示为\hat{w} ,\hat{b} 。 但是,即使我们的函数确实是线性的且无噪声,这些估计值也不会使损失函数真正地达到最小值。 因为算法会使得损失向最小值缓慢收敛,但却不能在有限的步数内非常精确地达到最小值。

线性回归恰好是一个在整个域中只有一个最小值的学习问题。 但是对像深度神经网络这样复杂的模型来说,损失平面上通常包含多个最小值。在训练我们的模型时,我们经常希望能够同时处理整个小批量的样本。 为了实现这一点,需要我们对计算进行矢量化, 从而利用线性代数库,而不是在Python中编写开销高昂的for循环。 深度学习实践者很少会去花费大力气寻找这样一组参数,使得在训练集上的损失达到最小。 事实上,更难做到的是找到一组参数,这组参数能够在我们从未见过的数据上实现较低的损失, 这一挑战被称为泛化(generalization)。

用模型进行预测

给定“已学习”的线性回归模型\hat{w}^Tx+\hat{b}, 现在我们可以通过房屋面积x_1和房龄x_2来估计一个(未包含在训练数据中的)新房屋价格。 给定特征估计目标的过程通常称为预测(prediction)或推断(inference)。

本书将尝试坚持使用预测这个词。 虽然推断这个词已经成为深度学习的标准术语,但其实推断这个词有些用词不当。 在统计学中,推断更多地表示基于数据集估计参数。 当深度学习从业者与统计学家交谈时,术语的误用经常导致一些误解。

矢量化加速

在训练我们的模型时,我们经常希望能够同时处理整个小批量的样本。 为了实现这一点,需要我们对计算进行矢量化, 从而利用线性代数库,而不是在Python中编写开销高昂的for循环。

%matplotlib inline
import math
import time
import numpy as np
import torch
from d2l import torch as d2l

为了说明矢量化为什么如此重要,我们考虑对向量相加的两种方法。 我们实例化两个全为1的10000维向量。 在一种方法中,我们将使用Python的for循环遍历向量; 在另一种方法中,我们将依赖对+的调用。

n = 10000
a = torch.ones([n])
b = torch.ones([n])

由于在本书中我们将频繁地进行运行时间的基准测试,所以我们定义一个计时器:

class Timer:  #@save
    """记录多次运行时间"""
    def __init__(self):
        self.times = []
        self.start()

    def start(self):
        """启动计时器"""
        self.tik = time.time()

    def stop(self):
        """停止计时器并将时间记录在列表中"""
        self.times.append(time.time() - self.tik)
        return self.times[-1]

    def avg(self):
        """返回平均时间"""
        return sum(self.times) / len(self.times)

    def sum(self):
        """返回时间总和"""
        return sum(self.times)

    def cumsum(self):
        """返回累计时间"""
        return np.array(self.times).cumsum().tolist()

现在我们可以对工作负载进行基准测试。

首先,我们使用for循环,每次执行一位的加法。

c = torch.zeros(n)
timer = Timer()
for i in range(n):
    c[i] = a[i] + b[i]
f'{timer.stop():.5f} sec'

或者,我们使用重载的+运算符来计算按元素的和。

timer.start()
d = a + b
f'{timer.stop():.5f} sec'

结果很明显,第二种方法比第一种方法快得多。 矢量化代码通常会带来数量级的加速。 另外,我们将更多的数学运算放到库中,而无须自己编写那么多的计算,从而减少了出错的可能性。

正态分布与平方损失

下面我们定义一个Python函数来计算正态分布。

def normal(x, mu, sigma):
    p = 1 / math.sqrt(2 * math.pi * sigma**2)
    return p * np.exp(-0.5 / sigma**2 * (x - mu)**2)

我们现在可视化正态分布。

# 再次使用numpy进行可视化
x = np.arange(-7, 7, 0.01)

# 均值和标准差对
params = [(0, 1), (0, 2), (3, 1)]
d2l.plot(x, [normal(x, mu, sigma) for mu, sigma in params], xlabel='x',
         ylabel='p(x)', figsize=(4.5, 2.5),
         legend=[f'mean {mu}, std {sigma}' for mu, sigma in params])

就像我们所看到的,改变均值会产生沿x轴的偏移,增加方差将会分散分布、降低其峰值。

从线性回归到深度网络

到目前为止,我们只谈论了线性模型。 尽管神经网络涵盖了更多更为丰富的模型,我们依然可以用描述神经网络的方式来描述线性模型, 从而把线性模型看作一个神经网络。 首先,我们用“层”符号来重写这个模型。

神经网络图

深度学习从业者喜欢绘制图表来可视化模型中正在发生的事情。 在 图3.1.2中,我们将线性回归模型描述为一个神经网络。 需要注意的是,该图只显示连接模式,即只显示每个输入如何连接到输出,隐去了权重和偏置的值。

图3.1.2所示的神经网络中,输入为x_1,...,x_d, 因此输入层中的输入数(或称为特征维度,feature dimensionality)为d。 网络的输出为o_1,因此输出层中的输出数是1。 需要注意的是,输入值都是已经给定的,并且只有一个计算神经元。 由于模型重点在发生计算的地方,所以通常我们在计算层数时不考虑输入层。 也就是说, 图3.1.2中神经网络的层数为1。 我们可以将线性回归模型视为仅由单个人工神经元组成的神经网络,或称为单层神经网络。

对于线性回归,每个输入都与每个输出(在本例中只有一个输出)相连, 我们将这种变换( 图3.1.2中的输出层) 称为全连接层(fully-connected layer)或称为稠密层(dense layer)。 下一章将详细讨论由这些层组成的网络。

生物学

线性回归发明的时间(1795年)早于计算神经科学,所以将线性回归描述为神经网络似乎不合适。 当控制学家、神经生物学家沃伦·麦库洛奇和沃尔特·皮茨开始开发人工神经元模型时, 他们为什么将线性模型作为一个起点呢? 我们来看一张图片 图3.1.3: 这是一张由树突(dendrites,输入终端)、 细胞核(nucleus,CPU)组成的生物神经元图片。 轴突(axon,输出线)和轴突端子(axon terminal,输出端子) 通过突触(synapse)与其他神经元连接。

小结

  • 机器学习模型中的关键要素是训练数据、损失函数、优化算法,还有模型本身。

  • 矢量化使数学表达上更简洁,同时运行的更快。

  • 最小化目标函数和执行极大似然估计等价。

  • 线性回归模型也是一个简单的神经网络。

练习